MBR PVDF Ultrafiltration System

MBR diaphragm: It is made of super-tough PVDF material. It is a core unit for treating sewage by integrating the water collecting pipe and water production pipe imported from Japan. The shape and size of the diaphragm are exactly the same as those of the original MF membrane (5000 series), and the vacuum membrane filtration pore size is 0.04 μm, which can further improve the filtration precision. Almost completely filter out bacteria.

MBR Membrane Frame: Frame structure made of SUS304 stainless steel, anti-corrosion, rust, the long service life of more than 10 years, is the carrier of the diaphragm

Water collecting system: It consists of pipes, pipe assemblies and related fixing parts. Each diaphragm water connection pipe is connected with it so that the water production of the diaphragm is concentrated together.

Aeration system: the purging tube and the outer tube hose and pipe fittings are provided by the diaphragm. The purging tube of the diaphragm directly blows the membrane wire from the bottom aeration to form a backwashing effect and reduce the surface deposition of the membrane filament. The probability of sludge is reduced to alleviate mud pollution.

It is not only used in wastewater treatment processes, water treatment and mineral water treatment but also has a longer service life and can effectively reduce operating costs.  After the use of equipment is reduced, the initial investment and operating costs can be further compressed.

Membrane water treatment technology has the characteristics of high efficiency and energy saving. , To some certain extent, the popularization and application coverage of membrane separation technology reflects the level of energy use and environmental protection of a country and region. It is also a guarantee means for sustainable development of society. Therefore, The strategic position of membrane separation technology is very prominent.

The key point to membrane water treatment is the microporous structure and surface properties of the membrane material. Scientists around the world proceed from the selection of materials and the optimization of the membrane-making process in order to prepare a membrane separation materials with excellent performance.

Accessing a membrane have a good practical value should depend on the following few points:

  • High retention rate and high water permeability rate;
  • Strong resistance to physical, chemical and microbial attack;
  • Flexible and sufficient mechanical strength;
  • Resistant to high temperature
  • Excellent anti-pollution;
  • Good resistance to chlorine and other oxides;
  • Long service life and withstand wide range of pH value;
  • Low operating pressure
  • Easy to store and transport;
  • Convenient preparation and industrialized production;
  • Dry and wet reversible.

Obtaining membrane separation materials with excellent separation selectivity and higher permeability has always been the goal pursued by membrane scientists and engineers. Through research on hollow fiber membranes from the selection of membrane-forming materials, optimization of process parameters, surface post-treatment, and design of membrane modules in scientific research institutions all over the world in recent decades, the overall performance of hollow fiber ultrafiltration membranes and microfiltration membranes has been improved greatly.

Recently, the high-end ultra-hydrophilic and excellent membrane pore microstructure separation membranes are mainly produced by few international famous companies. Including XP series hydrophilic hollow fiber ultrafiltration membranes from DuPont -Dow, HYDRAcap series hydrophilic hollow fiber ultrafiltration membranes produced by Nitto/hydranautics, DICP series polyvinylidene fluoride hydrophilic ultrafiltration membrane from Toray. Targa series hollow ultrafiltration membrane produced by Koch and hydrophilic hollow fiber ultrafiltration membrane from SUEZ (GE). Therefore, these few international well-known brands firmly occupy the high-end market of ultrafiltration membranes.

In recent years, Chinese ultrafiltration and microfiltration membranes have also improved to a certain extent in terms of material types, membrane structure and performance etc. However, Chinese companies are still lacking a high-performance ultra / micro-membrane for water treatment with excellent comprehensive properties such as super-hydrophilicity, high anti-pollution, high strength, high throughput, low membrane pressure and long-term service stability. These high-end membranes still rely heavily on foreign brands. This situation greatly limits Chinese membrane’s service lifespan and application fields.

Aiming at the shortcomings of existing technology, hydroblue have developed a high performance ultrafiltration membrane with properties of gradient pore microstructure, super-hydrophilicity, high anti-pollution, high strength, high flux, low trans-membrane pressure and long-term service stability. All comprehensive performance has reached the level of these international well-known companies in Europe, USA and Japan.

the micronano beads network structure (Figure1) is gradually increase from the outer surface to the inner surface along the radial section of the hollow fiber membrane. this network structure can significantly reduce the water permeation resistance, thereby significantly increasing water flux.

Gradient Pore Microstructure

In this technology, the amphiphilic modified silicone material provides excellent and continuous hydrophilicity for the hollow fiber membrane, thereby reducing the water permeability resistance and improving the membrane’s anti-fouling ability.

Product Specification

MBR Membrane Frame: Frame structure made of SUS304 stainless steel, anti-corrosion, rust, the long service life of more than 10 years, is the carrier of the diaphragm

Water collecting system: It consists of pipes, pipe assemblies and related fixing parts. Each diaphragm water connection pipe is connected with it so that the water production of the diaphragm is concentrated together.

Aeration system: the purging tube and the outer tube hose and pipe fittings are provided by the diaphragm. The purging tube of the diaphragm directly blows the membrane wire from the bottom aeration to form a backwashing effect and reduce the surface deposition of the membrane filament. The probability of sludge is reduced to alleviate mud pollution.

It is not only used in wastewater treatment processes, water treatment and mineral water treatment but also has a longer service life and can effectively reduce operating costs.  After the use of equipment is reduced, the initial investment and operating costs can be further compressed.

Why We Do

Membrane water treatment technology has the characteristics of high efficiency and energy saving. , To some certain extent, the popularization and application coverage of membrane separation technology reflects the level of energy use and environmental protection of a country and region. It is also a guarantee means for sustainable development of society. Therefore, The strategic position of membrane separation technology is very prominent.

The key point to membrane water treatment is the microporous structure and surface properties of the membrane material. Scientists around the world proceed from the selection of materials and the optimization of the membrane-making process in order to prepare a membrane separation materials with excellent performance.

Accessing a membrane have a good practical value should depend on the following few points:

  • High retention rate and high water permeability rate;
  • Strong resistance to physical, chemical and microbial attack;
  • Flexible and sufficient mechanical strength;
  • Resistant to high temperature
  • Excellent anti-pollution;
  • Good resistance to chlorine and other oxides;
  • Long service life and withstand wide range of pH value;
  • Low operating pressure
  • Easy to store and transport;
  • Convenient preparation and industrialized production;
  • Dry and wet reversible.

Obtaining membrane separation materials with excellent separation selectivity and higher permeability has always been the goal pursued by membrane scientists and engineers. Through research on hollow fiber membranes from the selection of membrane-forming materials, optimization of process parameters, surface post-treatment, and design of membrane modules in scientific research institutions all over the world in recent decades, the overall performance of hollow fiber ultrafiltration membranes and microfiltration membranes has been improved greatly.

Recently, the high-end ultra-hydrophilic and excellent membrane pore microstructure separation membranes are mainly produced by few international famous companies. Including XP series hydrophilic hollow fiber ultrafiltration membranes from DuPont -Dow, HYDRAcap series hydrophilic hollow fiber ultrafiltration membranes produced by Nitto/hydranautics, DICP series polyvinylidene fluoride hydrophilic ultrafiltration membrane from Toray. Targa series hollow ultrafiltration membrane produced by Koch and hydrophilic hollow fiber ultrafiltration membrane from SUEZ (GE). Therefore, these few international well-known brands firmly occupy the high-end market of ultrafiltration membranes.

In recent years, Chinese ultrafiltration and microfiltration membranes have also improved to a certain extent in terms of material types, membrane structure and performance etc. However, Chinese companies are still lacking a high-performance ultra / micro-membrane for water treatment with excellent comprehensive properties such as super-hydrophilicity, high anti-pollution, high strength, high throughput, low membrane pressure and long-term service stability. These high-end membranes still rely heavily on foreign brands. This situation greatly limits Chinese membrane’s service lifespan and application fields.

What We Have Done

Aiming at the shortcomings of existing technology, hydroblue have developed a high performance ultrafiltration membrane with properties of gradient pore microstructure, super-hydrophilicity, high anti-pollution, high strength, high flux, low trans-membrane pressure and long-term service stability. All comprehensive performance has reached the level of these international well-known companies in Europe, USA and Japan.

the micronano beads network structure (Figure1) is gradually increase from the outer surface to the inner surface along the radial section of the hollow fiber membrane. this network structure can significantly reduce the water permeation resistance, thereby significantly increasing water flux.

Gradient Pore Microstructure

In this technology, the amphiphilic modified silicone material provides excellent and continuous hydrophilicity for the hollow fiber membrane, thereby reducing the water permeability resistance and improving the membrane’s anti-fouling ability.

Leave A Message

    Your message needs to fill more than 20 characters and less than 100 characters.

    0 characters

    Your message needs to fill more than 50 characters and less than 500 characters.

    0 characters