Ultrafiltration System For Sewage Treatment

Ultrafiltration (UF) is a type of membrane filtration in which hydrostatic pressure forces a liquid against a semipermeable membrane. A semipermeable membrane is a thin layer of material capable of separating substances when a driving force is applied across the membrane. It is a low-pressure membrane process for water treatment that is designed to remove turbidity-causing particles including those comprised of suspended solids, bacteria, colloidal matter and proteins.

Ultrafiltration system for sewage treatment is one membrane filtration process that serves as a barrier to separate harmful bacteria, viruses, and other contaminants from clean water. An ultrafiltration water system forces water through a 0.02-micron membrane. Suspended particles that are too large to pass through the membrane stick to the outer membrane surface. Only fresh water and dissolved minerals pass through.

Hollow ultrafiltration membrane modules always encapsulate hollow tows in cylindrical containers with epoxy resin. The cast resin is cured and cut at both ends of the cylindrical container to form a structure such as a tube heat exchanger. Adding a cap to each end of the structure can form an ultrafiltration module. The water inlet and concentrated water inlet of the ultrafiltration module are generally above the caps on the two ends of the module, and the water production port on the cylinder wall is called the radial water production structure, and the cap is called the axial water production structure. Most of the currently popular large and medium-sized components are axial water-producing structures.

Membrane water treatment technology has the characteristics of high efficiency and energy saving. , To some certain extent, the popularization and application coverage of membrane separation technology reflects the level of energy use and environmental protection of a country and region. It is also a guarantee means for sustainable development of society. Therefore, The strategic position of membrane separation technology is very prominent.

The key point to membrane water treatment is the microporous structure and surface properties of the membrane material. Scientists around the world proceed from the selection of materials and the optimization of the membrane-making process in order to prepare a membrane separation materials with excellent performance.

Accessing a membrane have a good practical value should depend on the following few points:

  • High retention rate and high water permeability rate;
  • Strong resistance to physical, chemical and microbial attack;
  • Flexible and sufficient mechanical strength;
  • Resistant to high temperature
  • Excellent anti-pollution;
  • Good resistance to chlorine and other oxides;
  • Long service life and withstand wide range of pH value;
  • Low operating pressure
  • Easy to store and transport;
  • Convenient preparation and industrialized production;
  • Dry and wet reversible.

Obtaining membrane separation materials with excellent separation selectivity and higher permeability has always been the goal pursued by membrane scientists and engineers. Through research on hollow fiber membranes from the selection of membrane-forming materials, optimization of process parameters, surface post-treatment, and design of membrane modules in scientific research institutions all over the world in recent decades, the overall performance of hollow fiber ultrafiltration membranes and microfiltration membranes has been improved greatly.

Recently, the high-end ultra-hydrophilic and excellent membrane pore microstructure separation membranes are mainly produced by few international famous companies. Including XP series hydrophilic hollow fiber ultrafiltration membranes from DuPont -Dow, HYDRAcap series hydrophilic hollow fiber ultrafiltration membranes produced by Nitto/hydranautics, DICP series polyvinylidene fluoride hydrophilic ultrafiltration membrane from Toray. Targa series hollow ultrafiltration membrane produced by Koch and hydrophilic hollow fiber ultrafiltration membrane from SUEZ (GE). Therefore, these few international well-known brands firmly occupy the high-end market of ultrafiltration membranes.

In recent years, Chinese ultrafiltration and microfiltration membranes have also improved to a certain extent in terms of material types, membrane structure and performance etc. However, Chinese companies are still lacking a high-performance ultra / micro-membrane for water treatment with excellent comprehensive properties such as super-hydrophilicity, high anti-pollution, high strength, high throughput, low membrane pressure and long-term service stability. These high-end membranes still rely heavily on foreign brands. This situation greatly limits Chinese membrane’s service lifespan and application fields.

Aiming at the shortcomings of existing technology, hydroblue have developed a high performance ultrafiltration membrane with properties of gradient pore microstructure, super-hydrophilicity, high anti-pollution, high strength, high flux, low trans-membrane pressure and long-term service stability. All comprehensive performance has reached the level of these international well-known companies in Europe, USA and Japan.

the micronano beads network structure (Figure1) is gradually increase from the outer surface to the inner surface along the radial section of the hollow fiber membrane. this network structure can significantly reduce the water permeation resistance, thereby significantly increasing water flux.

Gradient Pore Microstructure

In this technology, the amphiphilic modified silicone material provides excellent and continuous hydrophilicity for the hollow fiber membrane, thereby reducing the water permeability resistance and improving the membrane’s anti-fouling ability.

Product Specification

Ultrafiltration system for sewage treatment is one membrane filtration process that serves as a barrier to separate harmful bacteria, viruses, and other contaminants from clean water. An ultrafiltration water system forces water through a 0.02-micron membrane. Suspended particles that are too large to pass through the membrane stick to the outer membrane surface. Only fresh water and dissolved minerals pass through.

Hollow ultrafiltration membrane modules always encapsulate hollow tows in cylindrical containers with epoxy resin. The cast resin is cured and cut at both ends of the cylindrical container to form a structure such as a tube heat exchanger. Adding a cap to each end of the structure can form an ultrafiltration module. The water inlet and concentrated water inlet of the ultrafiltration module are generally above the caps on the two ends of the module, and the water production port on the cylinder wall is called the radial water production structure, and the cap is called the axial water production structure. Most of the currently popular large and medium-sized components are axial water-producing structures.

Why We Do

Membrane water treatment technology has the characteristics of high efficiency and energy saving. , To some certain extent, the popularization and application coverage of membrane separation technology reflects the level of energy use and environmental protection of a country and region. It is also a guarantee means for sustainable development of society. Therefore, The strategic position of membrane separation technology is very prominent.

The key point to membrane water treatment is the microporous structure and surface properties of the membrane material. Scientists around the world proceed from the selection of materials and the optimization of the membrane-making process in order to prepare a membrane separation materials with excellent performance.

Accessing a membrane have a good practical value should depend on the following few points:

  • High retention rate and high water permeability rate;
  • Strong resistance to physical, chemical and microbial attack;
  • Flexible and sufficient mechanical strength;
  • Resistant to high temperature
  • Excellent anti-pollution;
  • Good resistance to chlorine and other oxides;
  • Long service life and withstand wide range of pH value;
  • Low operating pressure
  • Easy to store and transport;
  • Convenient preparation and industrialized production;
  • Dry and wet reversible.

Obtaining membrane separation materials with excellent separation selectivity and higher permeability has always been the goal pursued by membrane scientists and engineers. Through research on hollow fiber membranes from the selection of membrane-forming materials, optimization of process parameters, surface post-treatment, and design of membrane modules in scientific research institutions all over the world in recent decades, the overall performance of hollow fiber ultrafiltration membranes and microfiltration membranes has been improved greatly.

Recently, the high-end ultra-hydrophilic and excellent membrane pore microstructure separation membranes are mainly produced by few international famous companies. Including XP series hydrophilic hollow fiber ultrafiltration membranes from DuPont -Dow, HYDRAcap series hydrophilic hollow fiber ultrafiltration membranes produced by Nitto/hydranautics, DICP series polyvinylidene fluoride hydrophilic ultrafiltration membrane from Toray. Targa series hollow ultrafiltration membrane produced by Koch and hydrophilic hollow fiber ultrafiltration membrane from SUEZ (GE). Therefore, these few international well-known brands firmly occupy the high-end market of ultrafiltration membranes.

In recent years, Chinese ultrafiltration and microfiltration membranes have also improved to a certain extent in terms of material types, membrane structure and performance etc. However, Chinese companies are still lacking a high-performance ultra / micro-membrane for water treatment with excellent comprehensive properties such as super-hydrophilicity, high anti-pollution, high strength, high throughput, low membrane pressure and long-term service stability. These high-end membranes still rely heavily on foreign brands. This situation greatly limits Chinese membrane’s service lifespan and application fields.

What We Have Done

Aiming at the shortcomings of existing technology, hydroblue have developed a high performance ultrafiltration membrane with properties of gradient pore microstructure, super-hydrophilicity, high anti-pollution, high strength, high flux, low trans-membrane pressure and long-term service stability. All comprehensive performance has reached the level of these international well-known companies in Europe, USA and Japan.

the micronano beads network structure (Figure1) is gradually increase from the outer surface to the inner surface along the radial section of the hollow fiber membrane. this network structure can significantly reduce the water permeation resistance, thereby significantly increasing water flux.

Gradient Pore Microstructure

In this technology, the amphiphilic modified silicone material provides excellent and continuous hydrophilicity for the hollow fiber membrane, thereby reducing the water permeability resistance and improving the membrane’s anti-fouling ability.

Leave A Message

    GenderMaleFemale